Strategic Union Delegation and Incentives for Merger*

Ana Mauleon1 and Vincent J. Vannetelbosch2

1 FNRS and CEREC, Facultés Universitaires Saint-Louis, Brussels, Belgium
2 FNRS and CORE, Université catholique de Louvain, Louvain-la-Neuve, Belgium

November 2004

Abstract. We consider a unionized duopoly model to analyze how unions affect the incentives for merger. We find that both firms will merge if and only if unions are weak. However, once surplus-maximizing unions have the option to delegate the wage bargaining to wage-maximizing delegates (such as senior union members), both firms may have incentives to merge even if the union bargaining power is strong. Moreover, the option of strategic delegation may harm both the unions and the firms.

Keywords: Mergers, Union delegation, Wage bargaining.

JEL Classification Numbers: L13, J41, J51.

*Ana Mauleon and Vincent Vannetelbosch are Research Associates of the National Fund for Scientific Research (FNRS), Belgium.
Corresponding author address : Prof. V. Vannetelbosch, CORE, Université catholique de Louvain, 31 Voie du Roman Pays, B-1348 Louvain-la-Neuve, Belgium. E-mail: vannetelbosch@core.ucl.ac.be, Tel: 0032-10-474142, Fax: 0032-10-474301.
1 Introduction

Labour market organization plays an important role in determining wage levels and product market structure (see e.g. Horn and Wolinsky, 1988). In this note we incorporate the option for unions to delegate the wage bargaining and we analyze how it affects the incentives for merger.

Up to now the literature has mainly focused on strategic delegation on behalf of shareholders. Fershtman and Judd (1987) have addressed the issue of strategic managerial delegation in the context of oligopolistic industries with Cournot competition (see also Sklivas, 1987). More recently, González-Maestre and López-Cuñat (2001) have considered the interactions between the use of strategic managerial delegation and mergers. They have shown that the incentives for merger, under managerial delegation, are considerably increased with respect to the setting without delegation. Regarding strategic union delegation, Jones (1989) has shown that a divergence between the objectives of union leaders and union members will naturally arise in a democratic union as part of a rational bargaining strategy. Essentially, the reason is that in many bargaining situations, commitment can be valuable, and the union members can credibly commit to a bargaining stance, which they could not otherwise sustain, by delegating authority to a negotiator whose objectives make this stance an optimal one. More recently, Conlin and Furusawa (2000) have provided an explanation of why senior union members may represent the union in contract negotiations with a monopolist. By strategically delegating contract negotiations to wage-maximizing individuals, the surplus-maximizing union may be better off than if surplus-maximizing individuals negotiate the contract.¹

In this note we go further by dealing with the interactions between the strategic use of union delegation and the incentives for merger in duopolistic markets. In what follows we show that unionization does not always reduce the incentives for merger as advocated in Horn and Wolinsky (1988). Indeed, we find that, once the surplus-maximizing union has the option to delegate the wage bargaining to wage-maximizing delegates, both firms may have incentives to merge even if the union bargaining power is strong. Precisely, both firms may find profitable to merge and negotiate the wage with surplus-maximizing delegates in order to avoid having to bargain with wage-maximizing delegates. Moreover, we show that in such equilibrium the option of strategic delegation harms both the unions

¹Mauloune and Vannetelbosch (2004) have developed a model of wage determination with private information, in which the union has the option to delegate the wage bargaining. They have found that the maximum delay in reaching an agreement (or maximum strike activity) is greater whenever the union chooses wage-maximizing delegates instead of surplus-maximizing delegates and remains finite even when the length of the bargaining period shrinks to zero.
and the firms.

An important consequence of those findings is that one should question the wisdom that unionization decreases incentives for merger and that strategic union delegation increases benefits for the union.

2 The model

Consider a duopolistic market for a single homogenous product, where the demand is linear and is given by \(P = a - b \cdot Q \), \(P \) is the market price, and \(Q \) is the aggregate quantity demanded. There are two firms indexed by \(i, i = 1, 2 \). Let \(Q_i \) denote the quantity produced by firm \(i \), and let \(\Pi_i \) denote the profit level of each firm \(i \). The only variable input is labour. Technology exhibits constant returns to scale and is normalized in such a way that \(Q_i = L_i \), where \(L_i \) is labour input, and the unit production cost of each firm is the wage \(W_i \). Thus, the profit of each firm is given by

\[
\Pi_i = (a - bQ_i)Q_i - W_i \cdot Q_i.
\]

Each firm belongs to and is controlled by one risk-neutral owner. The objective of each owner is to maximize profits. In addition, each firm is unionized, and enters into a closed-shop agreement with its risk-neutral union. The workforce for each firm is drawn from separate pools of labour, and the union objective is to maximize the union surplus, taking as given the wage obtained by the other union:

\[
U_i = L_i \cdot (W_i - \overline{W}),
\]

where \(\overline{W} \) is the reservation wage.

We study a four-stage game. In stage one, the owners of the firms decide whether or not to merge both firms. In stage two, the surplus-maximizing union (of each firm simultaneously) chooses whether to use surplus-maximizing delegates or to use wage-maximizing delegates (such as senior union members) who will negotiate the wage with the employer. The objective of a wage-maximizing delegate is simply \(V_i = W_i - \overline{W} \). In stage three, the wage bargaining occurs. Finally, in stage four the employer chooses the output level. The model is solved backwards.

In the last stage of the game, two cases have to be distinguished. First, we consider the case in which the firms have not merged, i.e., the duopoly case. Then, knowing that the

\footnote{To keep the model as simple as possible it is assumed that once both firms merge both unions merge too. This can be derived endogenously by allowing both unions to choose whether or not to merge once both firms have already merged. Another interpretation is that a merger implies the concentration of all activities in a single plant.}
wage levels \((W_1 \text{ and } W_2)\) have already been determined, the employers of the two firms compete by choosing simultaneously their outputs to maximize their profits. The Nash equilibrium of this stage game yields:

\[
\begin{align*}
Q_{1D}(W_1, W_2) &= \frac{a + W_2 - 2W_1}{3b}, \\
Q_{2D}(W_1, W_2) &= \frac{a + W_1 - 2W_2}{3b}, \\
P_{D}(W_1, W_2) &= \frac{a + W_1 + W_2}{3},
\end{align*}
\]

where the subscript "D" identifies the duopoly. Second, we consider the case in which the firms have merged to form a monopoly. Then, knowing that the wage level \((W)\) has already been determined, the monopolist chooses:

\[
\begin{align*}
Q_{M}(W) &= \frac{a - W}{2b}, \\
P_{M}(W) &= \frac{a + W}{2},
\end{align*}
\]

where the subscript "M" identifies the monopoly.

3 Duopoly

In the third stage wage bargaining occurs. Inside each firm the employer and the union delegate negotiate the wage level foreseeing perfectly the effect of wages on output and employment levels. The two negotiations take place simultaneously and independently. That is, when negotiating the wage, the employer and the union delegate take the other firm’s wage as given. We model the outcomes of the bargaining by using the formula of an asymmetric Nash bargaining solution which is interpreted as the limit of the subgame perfect equilibrium of the Rubinstein (1982) bargaining model when the lag between offers converges to zero (see Binmore et al., 1986).

First, we consider the case in which in both firms the union sends surplus-maximizing delegates whose interest is the same as the union’s objective. Then, the predicted wages are given by

\[
\begin{align*}
W_1 &= \text{arg} \max[L_1(W_1, W_2) \cdot (W_1 - \bar{W})]^{\gamma \cdot [(P - W_1) \cdot Q_1(W_1, W_2)]^{1-\gamma}}, \\
W_2 &= \text{arg} \max[L_2(W_1, W_2) \cdot (W_2 - \bar{W})]^{\gamma \cdot [(P - W_2) \cdot Q_2(W_1, W_2)]^{1-\gamma}},
\end{align*}
\]

where \(\gamma \in (0, 1)\) is the union bargaining power and the disagreement points of both firms and unions are zero. Solving these simultaneously yields the following solution for wages, outputs, profits and unions payoffs:

\[
\begin{align*}
W_{1D}^{ss} &= W_{2D}^{ss} = \bar{W} + \frac{\gamma}{4-\gamma}(a - \bar{W}), \\
Q_{1D}^{ss} &= Q_{2D}^{ss} = \frac{2(2-\gamma)(a - \bar{W})}{3b(4-\gamma)}, \\
\Pi_{1D}^{ss} &= \Pi_{2D}^{ss} = \frac{1}{9b}\left[\frac{2(2-\gamma)(a - \bar{W})}{(4-\gamma)}\right]^2, \\
U_{1D}^{ss} &= U_{2D}^{ss} = \frac{2\gamma(2-\gamma)(a - \bar{W})^2}{3b(4-\gamma)^2},
\end{align*}
\]
where the superscript "ss" means that union 1 chooses surplus-maximizing delegates and union 2 chooses surplus-maximizing delegates.

Second, we consider the case in which in both firms the union sends wage-maximizing delegates. Then, the predicted wages are given by

\[
\begin{align*}
W_1 &= \arg\max\{(W_1 - \overline{W})^\gamma \cdot [(P - W_1) \cdot Q_1(W_1, W_2)]^{1-\gamma} \\
W_2 &= \arg\max\{(W_2 - \overline{W})^\gamma \cdot [(P - W_2) \cdot Q_2(W_1, W_2)]^{1-\gamma}
\end{align*}
\]

Solving these simultaneously yields the following solution for wages, outputs, profits and unions payoffs:

\[
\begin{align*}
W_{1D}^{w} &= W_{2D}^{w} = \overline{W} + \frac{\gamma}{4 - 3\gamma}(a - \overline{W}), \quad Q_{1D}^{w} = Q_{2D}^{w} = \frac{4(1 - \gamma)(a - \overline{W})}{3b(4 - 3\gamma)} \\
\Pi_{1D}^{w} &= \Pi_{2D}^{w} = \frac{1}{9b} \left[\frac{(4 - 1)(a - \overline{W})^{2}}{(4 - 3\gamma)^{2}} \right], \quad U_{1D}^{w} = U_{2D}^{w} = \frac{4\gamma(1 - \gamma)(a - \overline{W})^{2}}{3b(4 - 3\gamma)^{2}},
\end{align*}
\]

where the superscript "ww" means that union 1 chooses wage-maximizing delegates and union 2 chooses wage-maximizing delegates.

Finally, we consider the asymmetric cases in which the union of firm \(i\) chooses wage-maximizing delegates and the union of firm \(j\) chooses surplus-maximizing delegates. Then, the predicted wages are given by

\[
\begin{align*}
W_i &= \arg\max\{(W_i - \overline{W})^\gamma \cdot [(P - W_i) \cdot Q_i(W_i, W_j)]^{1-\gamma} \\
W_j &= \arg\max\{(L_i(W_i, W_j) \cdot (W_j - \overline{W}))^\gamma \cdot [(P - W_j) \cdot Q_j(W_i, W_j)]^{1-\gamma}
\end{align*}
\]

Solving these simultaneously yields the following solution for wages and unions payoffs:

\[
\begin{align*}
W_{1D}^{ws} &= W_{2D}^{ws} = \overline{W} + \frac{\gamma(4 + \gamma)}{8(2 - \gamma) - \gamma^2}(a - \overline{W}), \quad W_{1D}^{sw} = W_{2D}^{sw} = \overline{W} + \frac{\gamma(4 - \gamma)}{8(2 - \gamma) - \gamma^2}(a - \overline{W}), \\
U_{1D}^{ws} &= U_{2D}^{ws} = \frac{\gamma(4 + \gamma)(16 - 12\gamma - 4\gamma^2)(a - \overline{W})^{2}}{3b[8(2 - \gamma) - \gamma^2]^2}, \\
U_{1D}^{sw} &= U_{2D}^{sw} = \frac{\gamma(4 - \gamma)(16 - 12\gamma + 2\gamma^2)(a - \overline{W})^{2}}{3b[8(2 - \gamma) - \gamma^2]^2},
\end{align*}
\]

where the superscript "ws" ("sw") means that union 1 (2) chooses wage-maximizing delegates and union 2 (1) chooses surplus-maximizing delegates. Comparing the equilibrium wage expressions confirms our expectations. Wage-maximizing delegates obtain higher wage levels than surplus-maximizing delegates do: \(W_{1D}^{w} > W_{1D}^{ws} > W_{1D}^{sw} > W_{1D}^{ss}\) and \(W_{2D}^{w} > W_{2D}^{sw} > W_{2D}^{ws} > W_{2D}^{ss}\).

In the second stage, the unions simultaneously choose between surplus-maximizing delegates or wage-maximizing delegates to negotiate the wage with the employer. The
profile in which both unions choose surplus-maximizing delegates is a Nash equilibrium of the stage game if and only if $U_{1}^{ss} \geq U_{1D}^{ss}$ and $U_{2}^{ss} \geq U_{2D}^{ss}$. Hence, there is a γ such that the profile in which both unions choose surplus-maximizing delegates is a Nash equilibrium if and only if $\gamma \geq \gamma \approx .79$. The profile in which both unions choose wage-maximizing delegates is a Nash equilibrium of the stage game if and only if $U_{1}^{ww} \geq U_{1D}^{ww}$ and $U_{2}^{ww} \geq U_{2D}^{ww}$. Hence, there is a γ_D such that the profile in which both unions choose wage-maximizing delegates is a Nash equilibrium if and only if $\gamma \leq \gamma_D \approx .81$.

Two remarks have to be made. First, an asymmetric profile where one union chooses a surplus-maximizing delegate and the other union chooses a wage-maximizing delegate is never a Nash equilibrium. Second, for $\gamma \in [\gamma, \gamma_D]$ we have two Nash equilibria but only one seems to be a reasonable outcome. Indeed, one can easily show that the outcome where both unions send wage-maximizing delegates is the unique coalition-proof Nash equilibrium outcome (because of $U_{iD}^{ww} \geq U_{iD}^{ss}$, $i = 1, 2$). A Nash equilibrium strategy profile is a coalition-proof Nash equilibrium if no coalition of players could form a self-enforcing agreement to deviate from it. To summarize, the union in each firm will choose a wage-maximizing delegate if and only if the union bargaining power is not too strong, $\gamma \leq \gamma_D$.

4 Monopoly

In case the union sends surplus-maximizing delegates, the predicted wage is given by

$$W = \arg \max[I(W) \cdot (W - \overline{W})]^{\gamma} \cdot [(P - W) \cdot Q(W)]^{1-\gamma},$$

which yields:

$$W_s^M = \overline{W} + \frac{\gamma}{2}(a - \overline{W}), \quad Q_s^M = \frac{(2 - \gamma)(a - \overline{W})}{4b},$$

$$\Pi_s^M = \frac{1}{4b} \left[\frac{(2 - \gamma)(a - \overline{W})}{2}\right]^2, \quad U_s^M = \frac{\gamma(2 - \gamma)(a - \overline{W})^2}{8b},$$

where the superscript "s" means that the union sends surplus-maximizing delegates to negotiate with the monopolist.

In case the union sends wage-maximizing delegates, the predicted wage is given by

$$W = \arg \max[(W - \overline{W})]^{\gamma} \cdot [(P - W) \cdot Q(W)]^{1-\gamma},$$

which yields:

$$W_w^M = \overline{W} + \frac{\gamma}{2-\gamma}(a - \overline{W}), \quad Q_w^M = \frac{(1 - \gamma)(a - \overline{W})}{2 - \gamma b},$$

$$\Pi_w^M = \frac{1}{b} \left[\frac{(1 - \gamma)(a - \overline{W})}{(2 - \gamma)}\right]^2, \quad U_w^M = \frac{\gamma(1 - \gamma)(a - \overline{W})^2}{(2 - \gamma)^2 b},$$

5
where the superscript "\(w\)" means that the union chooses wage-maximizing delegates.

In the second stage, the union chooses whether to use surplus-maximizing delegates or wage-maximizing delegates to negotiate the wage with the monopolist. The union will choose wage-maximizing delegates if and only if \(U^w_M \geq U^*_M\), that is, if and only if \(8(1-\gamma) - (2 - \gamma)^3 \geq 0\). Hence, there is a \(\gamma_M\) such that the outcome where the union chooses wage-maximizing delegates is an equilibrium outcome of the stage game if and only if \(\gamma \leq \gamma_M \simeq .76\).

5 Incentives for merger

In this section we investigate how the option the union has to use strategic delegation will affect the incentives for merger. Before answering this question we consider the benchmark where unions do not have the option of strategic delegation. We say that both firms have incentives or it is profitable for them to merge if and only if \(\Pi_M \geq \Pi_{1D} + \Pi_{2D}\). Without the option of strategic delegation, both firms are going to merge if and only if \(\Pi_M^* \geq \Pi_{1D}^* + \Pi_{2D}^*\).

Hence, a merger will take place if and only if unions are weak, \(\gamma \leq \frac{12-8\sqrt{2}}{3} \simeq .23\). Indeed, when unions are strong enough, then firms have no incentives to merge because by merging the wage spillover effects which before were pushing down the wages would disappear.

Proposition 1 If unions cannot use strategic delegation, then firms have incentives to merge if and only if unions have a weak bargaining power, \(\gamma \leq \frac{12-8\sqrt{2}}{3}\).

One would be tempted to conclude that unionization or strong unions will decrease the incentives for merger. Then, by giving the option of strategic delegation to the union, one would expect that the profitability of mergers would decrease even more. As we show next there is no clear answer.

If \(\gamma \leq \gamma_M\) then both under the duopoly and the monopoly situations wage-maximizing delegates are sent. Firms have incentives to merge if and only if \(\Pi_M^w \geq \Pi_{1D}^{uw} + \Pi_{2D}^{uw}\). Hence, a merger will occur if and only if \(\gamma \leq \frac{12-8\sqrt{2}}{9-4\sqrt{2}} \simeq .205\). This result seems to suggest that strategic union delegation would reduce incentives for merger. But this is not always true.

If \(\gamma \in [\gamma_M, \gamma_D]\) then a merger enables both firms to switch from a duopolistic equilibrium in which wage-maximizing delegates are sent to a monopolistic equilibrium in which surplus-maximizing delegates are sent. That is, a merger switches the equilibrium regime with respect to the choice of delegates. Since \(\Pi_M^s \geq \Pi_{1D}^{uw} + \Pi_{2D}^{uw}\) for \(\gamma \in [\gamma_M, \gamma_D]\), it is optimal for the firms to merge and negotiate the wage with surplus-maximizing delegates in order to avoid a duopoly where negotiations would take place with wage-maximizing delegates.
Proposition 2 If unions can use strategic delegation, then firms are going to merge if and only if the union bargaining power is weak, \(\gamma \leq \frac{12-8\sqrt{2}}{9-4\sqrt{2}} \), or the union bargaining power is strong but not too strong, \(\gamma \in [\gamma_M, \gamma_D] \).

Finally, one should notice that the option of strategic delegation will harm both the firms and the unions when \(\gamma \in [\gamma_M, \gamma_D] \). Indeed, we observe that the equilibrium outcome with strategic delegation is Pareto-dominated by the one without strategic delegation:
\[
\Pi^s_M < \Pi^s_{1D} + \Pi^s_{2D} \quad \text{and} \quad U^s_M < U^s_{1D} + U^s_{2D}.
\]

6 Conclusion

To summarize, strategic union delegation will decrease the incentives for merger when the union bargaining power is weak. However, if the union has a strong bargaining power, then strategic delegation might create incentives for the firms to merge. In terms of competition policy, one should be careful when drawing conclusions with respect to unions and incentives for merger. Indeed, an increase in the union bargaining power will tend to diminish the incentives for merger. But, once we allow for strategic delegation (for instance, by means of laws protecting union delegates from being dismissed), firms might be pushed to merge even if unions are strong, because a merger enables them to switch from bilateral negotiations with wage-maximizing delegates to a single negotiation with surplus-maximizing delegates. Moreover, they might end up in a situation where both the firms and the unions are worse off compared to the case without the possibility of delegation.

Acknowledgments

Financial support from Spanish Ministerio de Ciencia y Tecnología under the project BEC 2003-02084, support from the CNRS under the project GW/SCSHE/SH/2003-41 and support from the Belgian French Community’s program Action de Recherches Concertée 03/08-302 (UCL) are gratefully acknowledged.

This paper presents research results of the Belgian Program on Interuniversity Poles of Attraction initiated by the Belgian State, Prime Minister’s Office, Science Policy Programming.
References

